Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Monoclon Antib Immunodiagn Immunother ; 43(2): 53-58, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593441

RESUMO

The giant panda (Ailuropoda melanoleuca) is one of the important species in worldwide animal conservation. Because it is essential to understand the disease of giant panda for conservation, histopathological analyses of tissues are important to understand the pathogenesis. However, monoclonal antibodies (mAbs) against giant panda-derived proteins are limited. Podoplanin (PDPN) is an essential marker of lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. PDPN is also overexpressed in various human tumors, which are associated with poor prognosis. Here, an anti-giant panda PDPN (gpPDPN) mAb, PMab-314 (mouse IgG1, kappa) was established using the Cell-Based Immunization and Screening method. PMab-314 recognized N-terminal PA16-tagged gpPDPN-overexpressed Chinese hamster ovary-K1 cells (CHO/PA16-gpPDPN) in flow cytometry. The KD value of PMab-314 for CHO/PA16-gpPDPN was determined as 1.3 × 10-8 M. Furthermore, PMab-314 is useful for detecting gpPDPN in western blot analysis. These findings indicate that PMab-314 is a useful tool for the analyses of gpPDPN-expressed cells.


Assuntos
Anticorpos Monoclonais , Ursidae , Cricetinae , Camundongos , Animais , Humanos , Cricetulus , Células CHO , Células Endoteliais/metabolismo , Glicoproteínas de Membrana , Especificidade de Anticorpos , Fatores de Transcrição
2.
Monoclon Antib Immunodiagn Immunother ; 43(2): 67-74, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512465

RESUMO

C-C motif chemokine receptor 1 (CCR1/CD191) is a member of G-protein-coupled receptors and is expressed on myeloid cells, such as neutrophils and macrophages. Because the CCR1 signaling promotes tumor expansion in the tumor microenvironment (TME), the modification of TME is an effective strategy for cancer therapy. Although CCR1 is an attractive target for solid tumors and hematological malignancies, therapeutic agents for CCR1 have not been approved. Here, we established a novel anti-mouse CCR1 (mCCR1) monoclonal antibody (mAb), C1Mab-6 (rat IgG2b, kappa), using the Cell-Based Immunization and Screening method. Flow cytometry and Western blot analyses showed that C1Mab-6 recognizes mCCR1 specifically. The dissociation constant of C1Mab-6 for mCCR1-overexpressed Chinese hamster ovary-K1 was determined as 3.9 × 10-9 M, indicating that C1Mab-6 possesses a high affinity to mCCR1. These results suggest that C1Mab-6 could be a useful tool for targeting mCCR1 in preclinical mouse models.


Assuntos
Anticorpos Monoclonais , Macrófagos , Animais , Cricetinae , Camundongos , Ratos , Anticorpos Monoclonais/farmacologia , Células CHO , Cricetulus
3.
Proc Natl Acad Sci U S A ; 121(13): e2312472121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502703

RESUMO

Alveolar soft-part sarcoma (ASPS) is a slow-growing soft tissue sarcoma with high mortality rates that affects adolescents and young adults. ASPS resists conventional chemotherapy; thus, decades of research have elucidated pathogenic mechanisms driving the disease, particularly its angiogenic capacities. Integrated blood vessels that are rich in pericytes (PCs) and metastatic potential are distinctive of ASPS. To mimic ASPS angiogenic microenvironment, a microfluidic coculture vasculature chip has been developed as a three-dimensional (3D) spheroid composed of mouse ASPS, a layer of PCs, and endothelial cells (ECs). This ASPS-on-a-chip provided functional and morphological similarity as the in vivo mouse model to elucidate the cellular crosstalk within the tumor vasculature before metastasis. We successfully reproduce ASPS spheroid and leaky vessels representing the unique tumor vasculature to assess effective drug delivery into the core of a solid tumor. Furthermore, this ASPS angiogenesis model enabled us to investigate the role of proteins in the intracellular trafficking of bioactive signals from ASPS to PCs and ECs during angiogenesis, including Rab27a and Sytl2. The results can help to develop drugs targeting the crosstalk between ASPS and the adjacent cells in the tumoral microenvironment.


Assuntos
Sarcoma Alveolar de Partes Moles , Animais , Camundongos , Sarcoma Alveolar de Partes Moles/tratamento farmacológico , Sarcoma Alveolar de Partes Moles/metabolismo , Sarcoma Alveolar de Partes Moles/patologia , Células Endoteliais/metabolismo , Técnicas de Cocultura , Microfluídica , Microambiente Tumoral
4.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339219

RESUMO

Monoclonal antibody (mAb)-based and/or cell-based immunotherapies provide innovative approaches to cancer treatments. However, safety concerns over targeting normal cells expressing reactive antigens still exist. Therefore, the development of cancer-specific mAbs (CasMabs) that recognize cancer-specific antigens with in vivo antitumor efficacy is required to minimize the adverse effects. We previously screened anti-human epidermal growth factor receptor 2 (HER2) mAbs and successfully established a cancer-specific anti-HER2 mAb, H2Mab-250/H2CasMab-2 (IgG1, kappa). In this study, we showed that H2Mab-250 reacted with HER2-positive breast cancer cells but did not show reactivity to normal epithelial cells in flow cytometry. In contrast, a clinically approved anti-HER2 mAb, trastuzumab, recognized both breast cancer and normal epithelial cells. We further compared the affinity, effector activation, and antitumor effect of H2Mab-250 with trastuzumab. The results showed that H2Mab-250 exerted a comparable antitumor effect with trastuzumab in the mouse xenograft models of BT-474 and SK-BR-3, although H2Mab-250 possessed a lower affinity and effector activation than trastuzumab in vitro. H2Mab-250 could contribute to the development of chimeric antigen receptor-T or antibody-drug conjugates without adverse effects for breast cancer therapy.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Xenoenxertos , Receptor ErbB-2/imunologia , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Anticancer Res ; 44(2): 489-495, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307564

RESUMO

BACKGROUND/AIM: Individuals with Down syndrome (DS), attributed to triplication of human chromosome 21 (Hsa21), exhibit a reduced incidence of solid tumors. However, the prevalence of glioblastoma among individuals with DS remains a contentious issue in epidemiological studies. Therefore, this study examined the gliomagenicity in Ts1Cje mice, a murine model of DS. MATERIALS AND METHODS: We employed the Sleeping Beauty transposon system for the integration of human oncogenes into cells of the subventricular zone of neonatal mice. RESULTS: Notably, Sleeping Beauty-mediated de novo murine gliomagenesis was significantly suppressed in Ts1Cje mice compared to wild-type mice. In glioblastomas of Ts1je mice, we observed an augmented presence of M1-polarized tumor-associated macrophages and microglia, known for their anti-tumor efficacy in the early stage of tumor development. CONCLUSION: Our findings in a mouse model of DS offer novel perspectives on the diminished gliomagenicity observed in individuals with DS.


Assuntos
Síndrome de Down , Camundongos , Animais , Humanos , Síndrome de Down/genética , Síndrome de Down/patologia , Modelos Animais de Doenças
6.
Cancers (Basel) ; 16(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275898

RESUMO

CIC-DUX4-rearranged sarcoma (CDS) is a rare and aggressive soft tissue tumor that occurs most frequently in young adults. The key oncogenic driver of this disease is the expression of the CIC-DUX4 fusion protein as a result of chromosomal rearrangements. CIC-DUX4 displays chromatin binding properties, and is therefore believed to function as an aberrant transcription factor. However, the chromatin remodeling events induced by CIC-DUX4 are not well understood, limiting our ability to identify new mechanism-based therapeutic strategies for these patients. Here, we generated a genome-wide profile of CIC-DUX4 DNA occupancy and associated chromatin states in human CDS cell models and primary tumors. Combining chromatin profiling, proximity ligation assays, as well as genetic and pharmacological perturbations, we show that CIC-DUX4 operates as a potent transcriptional activator at its binding sites. This property is in contrast with the repressive function of the wild-type CIC protein, and is mainly mediated through the direct interaction of CIC-DUX4 with the acetyltransferase p300. In keeping with this, we show p300 to be essential for CDS tumor cell proliferation; additionally, we find its pharmacological inhibition to significantly impact tumor growth in vitro and in vivo. Taken together, our study elucidates the mechanisms underpinning CIC-DUX4-mediated transcriptional regulation.

7.
Monoclon Antib Immunodiagn Immunother ; 42(6): 209-215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38150189

RESUMO

Immunohistochemistry staining is an essential method in pathological diagnoses. Podoplanin (PDPN) is a specific maker of alveolar epithelium, lymphatic vessels, and glomeruli. In this study, we established a novel anti-giraffe PDPN (girPDPN) mAb, PMab-301, using the Cell-Based Immunization and Screening (CBIS) method. PMab-301 (mouse IgG1, kappa) detected girPDPN in various applications, such as flow cytometry, western blot, and immunohistochemistry. PMab-301 specifically stained type-I alveolar cells using formalin-fixed paraffin-embedded giraffe lung tissues. Our findings suggest the potential usefulness of PMab-301 for the pathophysiological analyses of giraffe tissues.


Assuntos
Anticorpos Monoclonais , Girafas , Cricetinae , Camundongos , Animais , Imuno-Histoquímica , Epitopos , Cricetulus , Glicoproteínas de Membrana , Especificidade de Anticorpos , Células CHO , Fatores de Transcrição
8.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212282

RESUMO

Mesenchymal chondrosarcoma affects adolescents and young adults, and most cases usually have the HEY1::NCOA2 fusion gene. However, the functional role of HEY1-NCOA2 in the development and progression of mesenchymal chondrosarcoma remains largely unknown. This study aimed to clarify the functional role of HEY1-NCOA2 in transformation of the cell of origin and induction of typical biphasic morphology of mesenchymal chondrosarcoma. We generated a mouse model for mesenchymal chondrosarcoma by introducing HEY1-NCOA2 into mouse embryonic superficial zone (eSZ) followed by subcutaneous transplantation into nude mice. HEY1-NCOA2 expression in eSZ cells successfully induced subcutaneous tumors in 68.9% of recipients, showing biphasic morphologies and expression of Sox9, a master regulator of chondrogenic differentiation. ChIP sequencing analyses indicated frequent interaction between HEY1-NCOA2 binding peaks and active enhancers. Runx2, which is important for differentiation and proliferation of the chondrocytic lineage, is invariably expressed in mouse mesenchymal chondrosarcoma, and interaction between HEY1-NCOA2 and Runx2 is observed using NCOA2 C-terminal domains. Although Runx2 knockout resulted in significant delay in tumor onset, it also induced aggressive growth of immature small round cells. Runx3, which is also expressed in mesenchymal chondrosarcoma and interacts with HEY1-NCOA2, replaced the DNA-binding property of Runx2 only in part. Treatment with the HDAC inhibitor panobinostat suppressed tumor growth both in vitro and in vivo, abrogating expression of genes downstream of HEY1-NCOA2 and Runx2. In conclusion, HEY1::NCOA2 expression modulates the transcriptional program in chondrogenic differentiation, affecting cartilage-specific transcription factor functions.


Assuntos
Neoplasias Ósseas , Condrossarcoma Mesenquimal , Proteínas de Fusão Oncogênica , Animais , Camundongos , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Diferenciação Celular , Condrossarcoma Mesenquimal/genética , Condrossarcoma Mesenquimal/metabolismo , Condrossarcoma Mesenquimal/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Camundongos Nus , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
9.
Nat Commun ; 14(1): 1957, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029109

RESUMO

Alveolar soft part sarcoma (ASPS) is a soft part malignancy affecting adolescents and young adults. ASPS is characterized by a highly integrated vascular network, and its high metastatic potential indicates the importance of ASPS's prominent angiogenic activity. Here, we find that the expression of ASPSCR1::TFE3, the fusion transcription factor causatively associated with ASPS, is dispensable for in vitro tumor maintenance; however, it is required for in vivo tumor development via angiogenesis. ASPSCR1::TFE3 is frequently associated with super-enhancers (SEs) upon its DNA binding, and the loss of its expression induces SE-distribution dynamic modification related to genes belonging to the angiogenesis pathway. Using epigenomic CRISPR/dCas9 screening, we identify Pdgfb, Rab27a, Sytl2, and Vwf as critical targets associated with reduced enhancer activities due to the ASPSCR1::TFE3 loss. Upregulation of Rab27a and Sytl2 promotes angiogenic factor-trafficking to facilitate ASPS vascular network construction. ASPSCR1::TFE3 thus orchestrates higher ordered angiogenesis via modulating the SE activity.


Assuntos
Proteínas de Fusão Oncogênica , Sarcoma Alveolar de Partes Moles , Adolescente , Adulto Jovem , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Sarcoma Alveolar de Partes Moles/genética , Sarcoma Alveolar de Partes Moles/diagnóstico , Sarcoma Alveolar de Partes Moles/patologia , Genes Reguladores , Fatores de Transcrição/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
10.
Genes Chromosomes Cancer ; 62(9): 510-525, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36967299

RESUMO

Sarcomas are rare malignancies that exhibit diverse biological, genetic, morphological, and clinical characteristics. Genetic alterations, such as gene fusions, mutations in transcriptional machinery components, histones, and DNA methylation regulatory molecules, play an essential role in sarcomagenesis. These mutations induce and/or cooperate with specific epigenetic aberrations required for the growth and maintenance of sarcomas. Appropriate mouse models have been developed to clarify the significance of genetic and epigenetic interactions in sarcomas. Studies using the mouse models for human sarcomas have demonstrated major advances in our understanding the developmental processes as well as tumor microenvironment of sarcomas. Recent technological progresses in epigenome editing will not only improve the studies using animal models but also provide a direct clue for epigenetic therapies. In this manuscript, we review important epigenetic aberrations in sarcomas and their representative mouse models, current methods of epigenetic editing using CRISPR/dCas9 systems, and potential applications in sarcoma studies and therapeutics.


Assuntos
Edição de Genes , Sarcoma , Animais , Camundongos , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Metilação de DNA , Sarcoma/genética , Epigênese Genética , Microambiente Tumoral
11.
Br J Cancer ; 128(10): 1941-1954, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36959380

RESUMO

BACKGROUND: Systemic therapy for metastatic clear cell sarcoma (CCS) bearing EWSR1-CREB1/ATF1 fusions remains an unmet clinical need in children, adolescents, and young adults. METHODS: To identify key signaling pathway vulnerabilities in CCS, a multi-pronged approach was taken: (i) genomic and transcriptomic landscape analysis, (ii) integrated chemical biology interrogations, (iii) development of CREB1/ATF1 inhibitors, and (iv) antibody-drug conjugate testing (ADC). The first approach encompassed DNA exome and RNA deep sequencing of the largest human CCS cohort yet reported consisting of 47 patient tumor samples and 8 cell lines. RESULTS: Sequencing revealed recurrent mutations in cell cycle checkpoint, DNA double-strand break repair or DNA mismatch repair genes, with a correspondingly low to intermediate tumor mutational burden. DNA multi-copy gains with corresponding high RNA expression were observed in CCS tumor subsets. CCS cell lines responded to the HER3 ADC patritumab deruxtecan in a dose-dependent manner in vitro, with impaired long term cell viability. CONCLUSION: These studies of the genomic, transcriptomic and chemical biology landscape represent a resource 'atlas' for the field of CCS investigation and drug development. CHK inhibitors are identified as having potential relevance, CREB1 inhibitors non-dependence of CCS on CREB1 activity was established, and the potential utility of HER3 ADC being used in CCS is found.


Assuntos
Sarcoma de Células Claras , Criança , Adolescente , Adulto Jovem , Humanos , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/metabolismo , Sarcoma de Células Claras/patologia , Transcriptoma , Genômica , Sequência de Bases , RNA , Proteínas de Fusão Oncogênica/genética
12.
Histopathology ; 83(1): 57-66, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36860189

RESUMO

AIMS: Angiofibroma of soft tissue (AFST) is a benign tumour characterised by prominent arborizing blood vessels throughout the lesion. Approximately two-thirds of AFST cases were reported to have AHRR::NCOA2 fusion, and only two cases have been reported to have other gene fusions: GTF2I::NCOA2 or GAB1::ABL1. Although AFST is included in fibroblastic and myofibroblastic tumours in the World Health Organization's 2020 classification, histiocytic markers, especially CD163, have been reported to be positive in almost all examined cases, and it still remains the possibility of a fibrohistiocytic nature of the tumour. Therefore, we aimed to clarify the genetic and pathological spectrum of AFST and identify whether histiocytic marker-positive cells were true neoplastic cells. METHODS AND RESULTS: We evaluated 12 AFST cases, which included 10 cases with AHRR::NCOA2 and two with AHRR::NCOA3 fusions. Pathologically, nuclear palisading, which has not been reported in AFST, was detected in two cases. Furthermore, one tumour resected by additional wide resection revealed severe infiltrative growth. Immunohistochemical analysis indicated varying levels of desmin-positive cells in nine cases, whereas CD163- and CD68-positive cells were diffusely distributed in all 12 cases. We also performed double immunofluorescence staining and immunofluorescence in situ hybridisation in four resected cases with >10% desmin-positive tumour cells. The results suggested that the CD163-positive cells differed from desmin-positive cells with AHRR::NCOA2 fusion in all four cases. CONCLUSION: Our findings suggested that AHRR::NCOA3 could be the second most frequent fusion gene, and histiocytic marker-positive cells are not genuine neoplastic cells in AFST.


Assuntos
Angiofibroma , Neoplasias de Cabeça e Pescoço , Neoplasias de Tecidos Moles , Humanos , Angiofibroma/genética , Angiofibroma/patologia , Desmina , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Hibridização In Situ , Fusão Gênica , Coativador 3 de Receptor Nuclear/genética , Proteínas Repressoras/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos
13.
Int J Mol Med ; 51(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36660940

RESUMO

Epithelial cell adhesion molecule (EpCAM) is a type I transmembrane glycoprotein, which is highly expressed on tumor cells. As EpCAM plays a crucial role in cell adhesion, survival, proliferation, stemness, and tumorigenesis, it has been considered as a promising target for tumor diagnosis and therapy. Anti­EpCAM monoclonal antibodies (mAbs) have been developed and have previously demonstrated promising outcomes in several clinical trials. An anti­EpCAM mAb, EpMab­37 (mouse IgG1, kappa) was previously developed by the authors, using the cell­based immunization and screening method. In the present study, a defucosylated version of anti­EpCAM mAb (EpMab­37­mG2a­f) was generated to evaluate the antitumor activity against EpCAM­positive cells. EpMab­37­mG2a­f recognized EpCAM­overexpressing CHO­K1 (CHO/EpCAM) cells with a moderate binding­affinity [dissociation constant (KD)=2.2x10­8 M] using flow cytometry. EpMab­37­mG2a­f exhibited potent antibody­dependent cellular cytotoxicity (ADCC) and complement­dependent cytotoxicity (CDC) for CHO/EpCAM cells by murine splenocytes and complements, respectively. Furthermore, the administration of EpMab­37­mG2a­f significantly suppressed CHO/EpCAM xenograft tumor development compared with the control mouse IgG. EpMab­37­mG2a­f also exhibited a moderate binding­affinity (KD=1.5x10­8 M) and high ADCC and CDC activities for a colorectal cancer cell line (Caco­2 cells). The administration of EpMab­37­mG2a­f to Caco­2 tumor­bearing mice significantly suppressed tumor development compared with the control. By contrast, EpMab­37­mG2a­f never suppressed the xenograft tumor growth of Caco­2 cells in which EpCAM was knocked out. On the whole, these results indicate that EpMab­37­mG2a­f may exert antitumor activities against EpCAM­positive cancers and may thus be a promising therapeutic regimen for colorectal cancer.


Assuntos
Anticorpos Monoclonais , Neoplasias Colorretais , Cricetinae , Humanos , Animais , Camundongos , Anticorpos Monoclonais/uso terapêutico , Células CACO-2 , Xenoenxertos , Molécula de Adesão da Célula Epitelial , Cricetulus , Neoplasias Colorretais/tratamento farmacológico , Imunoglobulina G , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
14.
Monoclon Antib Immunodiagn Immunother ; 41(6): 303-310, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36383113

RESUMO

The C-C chemokine receptor 9 (CCR9) belongs to the G-protein-coupled receptor superfamily, and is highly expressed on the T cells and intestinal cells. CCR9 regulates various immune responses by binding to the C-C chemokine ligand, CCL25, and is involved in inflammatory diseases and tumors. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CCR9 is necessary for treatment and diagnosis. In this study, we established a specific anti-human CCR9 (hCCR9) mAb; C9Mab-11 (mouse IgG2a, kappa), using the synthetic peptide immunization method. C9Mab-11 reacted with hCCR9-overexpressed Chinese hamster ovary-K1 (CHO/hCCR9) and hCCR9-endogenously expressed MOLT-4 (human T-lymphoblastic leukemia) cells in flow cytometry. The dissociation constant (KD) of C9Mab-11 for CHO/hCCR9 and MOLT-4 cells were determined to be 1.2 × 10-9 M and 4.9 × 10-10 M, respectively, indicating that C9Mab-11 possesses a high affinity for both exogenously and endogenously hCCR9-expressing cells. Furthermore, C9Mab-11 clearly detected hCCR9 protein in CHO/hCCR9 cells using western blot analysis. In summary, C9Mab-11 can be a useful tool for analyzing hCCR9-related biological responses.


Assuntos
Anticorpos Monoclonais , Linfócitos T , Camundongos , Animais , Cricetinae , Células CHO , Cricetulus , Imunização
15.
Monoclon Antib Immunodiagn Immunother ; 41(5): 275-278, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36301196

RESUMO

The CXC chemokine receptor 6 (CXCR6) is a member of the G protein-coupled receptor family that is highly expressed in helper T type 1 cells, cytotoxic T lymphocytes (CTLs), and natural killer cells. CXCR6 plays critical roles in local expansion of effector-like CTLs in tumor microenvironment to potentiate the antitumor response. Therefore, the development of anti-CXCR6 monoclonal antibodies (mAbs) is essential to evaluate the immune microenvironment of tumors. Using N-terminal peptide immunization, we previously developed an anti-mouse CXCR6 (mCXCR6) mAb, Cx6Mab-1 (rat IgG1, kappa) , which is useful for flow cytometry and western blotting. In this study, we determined the critical epitope of Cx6Mab-1 by enzyme-linked immunosorbent assay (ELISA) using the 1 × alanine scanning (1 × Ala-scan) method or the 2 × alanine scanning (2 × Ala-scan) method. Although we first performed ELISA by 1 × Ala-scan using one alanine-substituted peptides of mCXCR6 N-terminal domain (amino acids 1-20), we could not identify the Cx6Mab-1 epitope. We next performed ELISA by 2 × Ala-scan using two alanine (or glycine) residues-substituted peptides of mCXCR6 N-terminal domain, and found that Cx6Mab-1 did not recognize S8A-A9G, A9G-L10A, L10A-Y11A, and G13A-H14A of the mCXCR6 N-terminal peptide. The results indicate that the binding epitope of Cx6Mab-1 includes Ser8, Ala9, Leu10, Tyr11, Gly13, and His14 of mCXCR6. Therefore, we could demonstrate that the 2 × Ala scan method is useful for determining the critical epitope of mAbs.


Assuntos
Alanina , Anticorpos Monoclonais , Animais , Ratos , Mapeamento de Epitopos/métodos , Receptores CXCR6 , Epitopos , Ensaio de Imunoadsorção Enzimática , Peptídeos
16.
Nat Rev Dis Primers ; 8(1): 66, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202860

RESUMO

Undifferentiated small round cell sarcomas (SRCSs) of bone and soft tissue comprise a heterogeneous group of highly aggressive tumours associated with a poor prognosis, especially in metastatic disease. SRCS entities mainly occur in the third decade of life and can exhibit striking disparities regarding preferentially affected sex and tumour localization. SRCSs comprise new entities defined by specific genetic abnormalities, namely EWSR1-non-ETS fusions, CIC-rearrangements or BCOR genetic alterations, as well as EWSR1-ETS fusions in the prototypic SRCS Ewing sarcoma. These gene fusions mainly encode aberrant oncogenic transcription factors that massively rewire the transcriptome and epigenome of the as yet unknown cell or cells of origin. Additional mutations or copy number variants are rare at diagnosis and, depending on the tumour entity, may involve TP53, CDKN2A and others. Histologically, these lesions consist of small round cells expressing variable levels of CD99 and specific marker proteins, including cyclin B3, ETV4, WT1, NKX3-1 and aggrecan, depending on the entity. Besides locoregional treatment that should follow standard protocols for sarcoma management, (neo)adjuvant treatment is as yet ill-defined but generally follows that of Ewing sarcoma and is associated with adverse effects that might compromise quality of life. Emerging studies on the molecular mechanisms of SRCSs and the development of genetically engineered animal models hold promise for improvements in early detection, disease monitoring, treatment-related toxicity, overall survival and quality of life.


Assuntos
Sarcoma de Ewing , Sarcoma de Células Pequenas , Sarcoma , Agrecanas , Humanos , Qualidade de Vida , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/terapia , Sarcoma de Ewing/diagnóstico , Sarcoma de Células Pequenas/diagnóstico , Sarcoma de Células Pequenas/genética , Sarcoma de Células Pequenas/patologia , Fatores de Transcrição
17.
Blood Adv ; 6(19): 5527-5537, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35947126

RESUMO

Monocytic leukemia zinc finger protein (MOZ, MYST3, or KAT6A) is a MYST-type acetyltransferase involved in chromosomal translocation in acute myelogenous leukemia (AML) and myelodysplastic syndrome. MOZ is established as essential for hematopoiesis; however, the role of MOZ in AML has not been addressed. We propose that MOZ is critical for AML development induced by MLL-AF9, MLL-AF10, or MOZ-TIF2 fusions. Moz-deficient hematopoietic stem/progenitor cells (HSPCs) transduced with an MLL-AF10 fusion gene neither formed colonies in methylcellulose nor induced AML in mice. Moz-deficient HSPCs bearing MLL-AF9 also generated significantly reduced colony and cell numbers. Moz-deficient HSPCs expressing MOZ-TIF2 could form colonies in vitro but could not induce AML in mice. By contrast, Moz was dispensable for colony formation by HOXA9-transduced cells and AML development caused by HOXA9 and MEIS1, suggesting a specific requirement for MOZ in AML induced by MOZ/MLL fusions. Expression of the Hoxa9 and Meis1 genes was decreased in Moz-deficient MLL fusion-expressing cells, while expression of Meis1, but not Hoxa9, was reduced in Moz-deficient MOZ-TIF2 AML cells. AML development induced by MOZ-TIF2 was rescued by introducing Meis1 into Moz-deficient cells carrying MOZ-TIF2. Meis1 deletion impaired MOZ-TIF2-mediated AML development. Active histone modifications were also severely reduced at the Meis1 locus in Moz-deficient MOZ-TIF2 and MLL-AF9 AML cells. These results suggest that endogenous MOZ is critical for MOZ/MLL fusion-induced AML development and maintains active chromatin signatures at target gene loci.


Assuntos
Leucemia Mieloide Aguda , Animais , Cromatina , Hematopoese , Histona Acetiltransferases/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Metilcelulose , Camundongos
18.
Monoclon Antib Immunodiagn Immunother ; 41(2): 115-119, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35471052

RESUMO

C-C motif chemokine receptor 8 (CCR8) is a G protein-coupled receptor predominantly expressed in regulatory T (Treg) and T helper 2 cells. The evidence that CCR8 expression in Treg is increased in cancers, CCR8 increases migration activity of Treg, and CCR8 induces the anti-apoptotic activity in T cell leukemia and lymphoma suggests that CCR8 is associated with cancer development. Thus, developing a specific monoclonal antibody (mAb) for CCR8 is useful for diagnostic and therapeutic purposes and the anti-CCR8 mAb becomes a remarkable experimental tool for basic research. We previously developed an anti-mouse CCR8 (mCCR8) mAb called C8Mab-2 (rat IgG2b, kappa) that was applicable to flow cytometric analysis for both endogenous and exogenous mCCR8. This study showed that C8Mab-2 and recombinant C8Mab-2 (recC8Mab-2) were specifically bound to exogenously expressed mCCR8 in mCCR8-overexpressed Chinese hamster ovary-K1 cells. In addition, we found that C8Mab-2 and recC8Mab-2 recognized endogenous mCCR8 in P388 (a mouse lymphocyte-like cell line) and J774-1 cells (a mouse macrophage-like cell line). These data demonstrate that C8Mab-2 and recC8Mab-2 are useful for immunocytochemical analysis.


Assuntos
Anticorpos Monoclonais , Neoplasias , Animais , Células CHO , Cricetinae , Cricetulus , Imuno-Histoquímica , Imunossupressores , Camundongos , Ratos , Receptores CCR8 , Receptores de Quimiocinas/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-35225663

RESUMO

The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein. Although EGFR is physiologically essential in normal cells, it contributes to tumor malignancy through gene amplification and/or protein overexpression, which augment signaling cascades in tumor cells. We previously developed an anti-human EGFR (hEGFR) monoclonal antibody (mAb), EMab-134 (mouse IgG1, kappa), which detects hEGFR and dog EGFR (dEGFR) with high sensitivity and specificity. The mouse IgG2a version of EMab-134 (134-mG2a) has antitumor effects toward mouse xenografts of hEGFR-expressing oral squamous cell carcinomas. Furthermore, 134-mG2a-f, the defucosylated version of 134-mG2a, exhibits antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in dEGFR-overexpressed CHO-K1 (CHO/dEGFR) cells and antitumor activities in mouse xenografts of CHO/dEGFR cells. Herein, the reactivity of 134-mG2a-f against canine cancer cells with endogenous dEGFR was first examined by flow cytometry and immunocytochemistry. In vitro analysis demonstrated that 134-mG2a-f highly exerted ADCC and CDC for a canine osteosarcoma cell line, D-17, which expresses endogenous dEGFR. Moreover, in vivo administration of 134-mG2a-f significantly suppressed the development of D-17 compared with the results in response to control mouse IgG. These results suggest that 134-mG2a-f exerts antitumor effects against dEGFR-expressing canine cancers, and could be valuable as part of an antibody treatment regimen for them.


Assuntos
Anticorpos Monoclonais , Osteossarcoma , Animais , Citotoxicidade Celular Dependente de Anticorpos , Linhagem Celular Tumoral , Cricetinae , Cães , Xenoenxertos , Humanos , Camundongos , Osteossarcoma/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Lab Chip ; 22(3): 641-651, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018934

RESUMO

Three-dimensional (3D) tissue culture is a powerful tool for understanding physiological events. However, 3D tissues still have limitations in their size, culture period, and maturity, which are caused by the lack of nutrients and oxygen supply through the vasculature. Here, we propose a new method for culturing a 3D tissue-a spheroid-directly on an 'on-chip vascular bed'. The method can be applied to any 3D tissue because the vascular bed is preformed, so that angiogenic factors from the tissue are not necessary to induce vasculature. The essential component of the assay system is the removable membrane that initially separates the 3D tissue culture well and the microchannel in which a uniform vascular bed is formed, and then allows the tissue to be settled directly onto the vascular bed following its removal. This in vitro system offers a new technique for evaluating the effects of vasculature on 3D tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...